LINK BETWEEN LEVELS OF EXTRACELLULAR VESICLES OR EVS IN THE BLOOD AND TISSUE DAMAGE CAUSED BY DISEASES Cellular couriers: Body’s ‘delivery trucks’ could lead to new cancer blood test
With
Dr Georgia Atkin-Smith, Senior Postdoctoral researcher and NHMRC Investigator Grant Research Fellow, WEHI, Melbourne, Australia
Associate Professor Edwin Hawkins, Laboratory Head, WEHI, Melbourne, Australia
CASE STUDY
Filmed in Melbourne | March 2025
A landmark study led by WEHI and La Trobe University has found a potential new diagnostic marker that could be used to better detect the level of tissue damage in our bodies.
This study revealed, for the first time, a link between levels of EVs in the blood and tissue damage caused by diseases such as leukaemia.
Researchers hope to leverage the critical new insight to develop a blood test to monitor cancer patients with tissue damage, which could, in future, enhance treatment strategies for blood cancers and other diseases.
Extracellular vesicles (EVs) are like small delivery trucks in the human body that are dispatched by our cells to distribute important materials like proteins, fats and genetic information to other cells.
This delivery system helps cells communicate with each other, especially when they are under stress or dying.
Research into how EVs form and their link to disease progression is challenging because of their small size, with most studies restricted to a ‘cells-in-a-dish’ approach.
In an unprecedented study, researchers were able to overcome this significant barrier by imaging live EVs inside the bone marrow of mice.
The study involved a significant collaboration with Professor Ivan Poon, Director of the La Trobe Research Centre for Extracellular Vesicles (RCEV) – the largest group of EV researchers in the Southern Hemisphere.
The WEHI research team is now assessing whether EVs can be used as a biomarker in acute myeloid leukemia (AML) patients. They hope to develop new tools and techniques that would allow clinicians to determine the impact of disease on healthy tissue, and assess the disease progression by analysing patient samples.
The study, published in Nature Communications Oct 2024, also involved collaborations with the University of Melbourne, The Florey, Olivia Newton-John Cancer Research Institute, Peter MacCallum Cancer Centre and Monash University.
The research was supported by the National Health and Medical Research Council, Australian Research Council, CASS Foundation, Jack Brockhoff Foundation, L’Oreal UNESCO For Women in Science, Victorian Cancer Agency, a Sir Clive McPherson Family Fellowship and a Rae Foundation grant.
Source: WEHI News
You Might also like
-
Identification, characterisation and role of leader cells in ovarian cancer progression
Dr. Maree Bilandzic is a molecular cancer biologist dedicated to advancing the understanding and treatment of ovarian cancer (OC). Her research addresses critical gaps in OC treatment by investigating the mechanisms behind metastasis, chemotherapy resistance, and tumour recurrence. By utilising innovative methodologies and disease-representative models, Dr. Bilandzic has pioneered the identification and characterisation of leader cells (LCs)—a unique, stem-like subpopulation within tumours that plays a crucial role in OC progression.
-
Oral administration of insulin for Type 1 Diabetes
Huiwen Pang is a 3rd year PhD candidate in the Australian Institute for Bioengineering and Nanotechnology, University of Queensland, focusing on biomedical health research. Prior to commencing his PhD, Huiwen studied animal genetics in his Masters degree at Huazhong Agriculture University in China.
People with diabetes, especially Type 1 diabetes, largely rely on the insulin injections or insulin pumps to control their high blood glucose levels, which is painful and has a high risk of infections.
Huiwen Pang is conducting research on nano-based drug formulations for Type 1 diabetes treatment, with a focus on using nanomaterials to load insulin for oral administration and employing anti-apoptotic and anti-inflammatory approaches to mitigate damage to beta cells.
-
Next generation nanomedicine and radiopharmaceuticals to treat cancer
Finding better ways of treating cancer, aside from finding a cure, aim to provide a better quality of life for those who suffer from it.
Professor Thurecht’s work focuses on nanomedicine and spans across the Australian Institute for Bioengineering and Nanotechnology and the Centre for Advanced Imaging, at the University of Queensland in Australia.