RESEARCHER PROFILE
Professor Ernst J. Wolvetang
Australian Institute for Bioengineering and Nanotechnology
The University of Queensland
Australia
Professor Ernst Wolvetang obtained his PhD from the University of Amsterdam, continued his post-doctoral training at the Monash Institute for Reproduction and Development, before joining the Australian Stem Cell Centre.
In 2008 he was recruited to the Australian Institute for Bioengineering and Nanotechnology at The University of Queensland (UQ). He currently heads the Stem Cell Engineering Laboratory and directs the Australian Organoid Facility at UQ as well as the Phenomics Australia NNAT node at UQ.
He is a leader in the derivation, genome editing and disease modelling with human induced pluripotent stem cell and organoids derived from these. Professor Wolvetang is known as our “Mr Organoid” for his trailblazing approach to this exciting field of medical research. He is a pioneer in the field of pluripotent stem cell biology, whose frank and colourful turn of phrase underscores the passion he has for his work.
Professor Wolvetang was among the first to bring the first human embryonic stem cells to Queensland, with his Wolvetang Group at the AIBN now renowned for its work with organoids: growing them, studying them, and using them to try and understand diseases and human development.
Using cutting edge technology, Professor Wolvetang designs and grows organoids both for their own work and for labs across the country, coaxing pluripotent stem cells or tissue samples into 3D structures that mimic the function and architecture of real brains, livers, kidneys, spinal cords, and intestines.
Crucially, Professor Wolvetang says organoids could one day negate the need for animal models, as they can be designed to replicate what is happening inside an individual patient, offering researchers a unique opportunity to study personalised responses to new treatments.
He says this could shave years off the drug development process and – ultimately – the time between diagnosing a problem and delivering the solution.
“Once we demonstrate the power and accuracy of this approach for one genetic disease, it could open the door for testing of other gene therapies for a range of genetic neurological conditions.”, says Professor Wolvetang.
You Might also like
-
Optimising Rural Musculoskeletal Health
Adnan Asger Ali is a Director of Accelerate Physiotherapy and PhD candidate at The University of Sydney, where he is researching implementation strategies for musculoskeletal care pathways in rural Australia as part of the PACE-RURAL project.
A passionate advocate for physiotherapy, Adnan serves as Chair of the Australian Physiotherapy Association’s National Musculoskeletal Committee and sits on the Capital Health Network’s Clinical Council. His commitment to clinical excellence was recognised when he received Physiotherapist of the Year at the 2023 Allied Health Awards.
-
Professor Kim Hemsley
RESEARCH IN SANFILIPPO SYNDROME, A EURODEGENERATIVE LYSOSOMAL STORAGE DISORDER THAT CAUSES CHILDHOOD DEMENTIA.
@ FLINDERS UNIVERSITY, SOUTH AUSTRALIA -
Targeting chemotherapy resistance in ovarian cancer patients
Dr Alex Cole, from the Centenary Institute’s Centre for Biomedical AI, is now leading the research focused on developing a new treatment to counteract a protein called follistatin (FST), known for making ovarian cancer cells resistant to chemotherapy.
By employing cutting-edge molecular biology and directed evolution techniques, the project aims to create nanobodies—small, precise molecules—that can block FST. If successful, these nanobodies could enhance the effectiveness of chemotherapy and improve ovarian cancer treatment rates.